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Movies of the breakup of viscous and viscoelastic drops in the high-speed airstream
behind a shock wave in a shock tube have been reported by Joseph, Belanger &
Beavers (1999). They performed a Rayleigh–Taylor stability analysis for the initial
breakup of a drop of Newtonian liquid and found that the most unstable Rayleigh–
Taylor wave fits nearly perfectly with waves measured on enhanced images of drops
from the movies, but the effects of viscosity cannot be neglected. Here we construct
a Rayleigh–Taylor stability analysis for an Oldroyd-B fluid using measured data for
acceleration, density, viscosity and relaxation time λ1. The most unstable wave is a
sensitive function of the retardation time λ2 which fits experiments when λ2/λ1 =
O(10−3). The growth rates for the most unstable wave are much larger than for the
comparable viscous drop, which agrees with the surprising fact that the breakup
times for viscoelastic drops are shorter. We construct an approximate analysis of
Rayleigh–Taylor instability based on viscoelastic potential flow which gives rise to
nearly the same dispersion relation as the unapproximated analysis.

1. Introduction
This paper is an extension of Joseph, Belanger & Beavers (1999, hereinafter referred

to as JBB) on the breakup of a liquid drop suddenly exposed to a high-speed
airstream behind a shock wave in a shock tube. In JBB we presented several series of
photographs taken from high-speed movies showing the breakup of various liquids
in the flow behind Mach 2 and Mach 3 shock waves. We also presented a Rayleigh–
Taylor stability analysis for drops of Newtonian liquids. We extend that work in this
paper to include a Rayleigh–Taylor stability analysis for three viscoelastic drops for
which measured data are given by JBB. The extensive literature relevant to drop
breakup in a high-speed airstream is reviewed in JBB and will not be repeated
here. The recent and fairly extensive literature on atomization of Newtonian (not
viscoelastic) liquids is well represented in the papers by Hsiang & Faeth (1992),
Hwang, Liu & Rietz (1996), Faeth (1996) and Liu & Rietz (1997). These results, and
earlier drop breakup studies such as Krzeczkowski (1980), Wierzba (1990), Kitscha &
Kocamustafaogullari (1989), and Stone (1994), are restricted to relatively low Weber
and Reynolds numbers. The highest Weber and Reynolds number data for drop
breakup were reported by Hsiang & Faeth (1992) who worked under conditions for
which the Weber numbers ranged from 0.5 to 1000 with Reynolds numbers from
300 to 1600. The excellent paper on Rayleigh–Taylor instability in elastic liquids by
Aitken & Wilson (1993) is directly relevant to our work here and was not reviewed
by JBB.
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Figure 1. Stages in the breakup of a drop of 2% aqueous solution of polyox (WSR 301; diameter =
2.9 mm) in the flow behind a Mach 2 shock wave. Air velocity = 432 m s−1; dynamic pressure =
165.5 kPa; Weber number = 15 200. Time (µs); (a) 0, (b) 55, (c) 95, (d ) 290, (e) 370, (f) 435.

Aitken & Wilson (1993) studied the problem of the stability to small disturbances
of an incompressible elastic fluid above a free surface. They derived dispersion rela-
tions for an Oldroyd fluid in the case where the fluid is bounded below by a rigid
surface. When the retardation time and inertia are neglected the analysis predicts an
unbounded growth rate at a certain Weissenberg number. The addition of inertia or
retardation smooths this singularity. The work presented here differs from that of
Aitken & Wilson in the following ways: in our work the two fluids are unbounded; we
construct both an exact analysis and an approximate analysis based on potential flow;
we aim to apply the analysis of Rayleigh–Taylor instability of viscoelastic drops using
measured data; we compute and present dispersion relations emphasizing the role of
the most dangerous wave associated with the maximum growth rate, thereby empha-
sizing the role of the huge acceleration in the drop breakup problem due to Rayleigh–
Taylor instability; and we use the maximum growth rate to define a breakup time.

Only a few studies of the breakup of viscoelastic drops have been published:
Lane (1951), Wilcox et al. (1961), Matta & Tytus (1982), and Matta, Tytus & Harris
(1983). Matta and co-workers conducted studies at Mach numbers near one and less.
They showed that threads and ligaments of liquid arise immediately after breakup,
rather than the droplets which are seen in Newtonian liquids. We have verified these
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Figure 2. Stages in the breakup of a drop of 2% aqueous solution of polyox (WSR 301;
diameter = 2.9 mm) in the flow behind a Mach 3 shock wave. Air velocity = 755 m s−1; dynamic
pressure = 587.2 kPa; Weber number = 54 100. Time (µs); (a) 0, (b) 30, (c) 45, (d ) 170, (e) 195,
(f) 235.

general observations for three different viscoelastic liquids (2% aqueous solution
of polyox; 2% aqueous solution of polyacrylamide; 2.6% solution of polystyrene
butylacrylate in tributyl phosphate) in high-speed air behind shocks with shock Mach
numbers as high as 3. Breakup sequences for these three liquids are presented in
figures in JBB, which show just a few frames from the respective movies on our
web page http://www.aem.umn.edu/research/aerodynamic breakup. The figures for
polyox and polyacrylamide are reproduced here as figures 1–3. For comparison we
also reproduce here as figure 4 the breakup of silicone oil of viscosity 1 kg m−1 s−1,
which closely matches that of the polyacrylamide solution (0.96 kg m−1 s−1).

2. Experiments
The experiments reported here are fully described in JBB. The drops were injected

into the test section of a shock tube and timed so that the shock wave passed over
the drop as it fell under gravity into the field of view of a Cordin model 377 rotating
drum camera, operated at 200 000 frames per second. The individual frames from the
filmstrips produced by the camera were scanned into a PC as TIFF files using Adobe
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Figure 3. Stages in the breakup of a drop of 2% aqueous solution of polyacrylamide (Cyanamer
N-300LMW; diameter = 3.2 mm) in the flow behind a Mach 3 shock wave. Air velocity = 771 m s−1;
dynamic pressure = 578.1 kPa; Weber number = 82 200. Time (µs); (a) 0, (b) 45, (c) 60, (d ) 90,
(e) 145, (f) 185, (g) 225.

Photoshop and then composed into a movie sequence using Alias Composer running
on a Unix-based workstation.

The data for the experiments discussed in this paper are listed in table 1. The
Ohnesorge number Oh, the Weber number We and the Reynolds number Re

Oh =
µd

(ρdDγ)1/2
, We =

ρV 2D

γ
, Re =

VDρ

µ
(2.1)

are defined in terms of the initial drop diameter D, drop viscosity µd, surface tension
γ, drop density ρd listed in columns 2, 3, 4, and 5 and the free-stream values of the
velocity V , viscosity µ, and density ρ.



R
a
y
leig

h
–
T

a
y
lo

r
in

sta
b
ility

o
f

visco
ela

stic
d
ro

p
s

1
1
3

Diameter Viscosity Surface tension Density Relaxation
(a) Liquid (mm) (kg m−1 s−1) (N m−1) (kg m−3) time (s) Oh

Newtonian
SO 1000 2.6 1 0.021 969 4.3

Viscoelastic
2% PO 2.9 35 0.063 990 0.21 82.3
2% PAA 3.2 0.96 0.045 990 0.039 2.5

Velocity Density Pressure Dynamic T2 temp Weber no. Reynolds no.
(b) Liquid (m s−1) (kg m−3) (kPa) pressure (kPa) (K) (×103) (×103) Shock M

Newtonian
SO 1000 438.8 1.876 269.2 180.6 502 44.7 80.6 2.03
SO 1000 767.4 2.312 523.7 681.0 792 168.6 129.1 3.02

Viscoelastic
2% PO 431.7 1.776 252.3 165.5 497 15.2 84.2 2.01
2% PO 754.8 2.061 458.7 587.2 778 54.1 127.6 2.98
2% PAA 770.6 1.947 442.9 578.1 795 82.2 134.0 3.03

Table 1. Experimental parameters: (a) liquid properties, (b) free-stream conditions. Relaxation time for PO and PAA are computed from measured
values taken on the wave-speed meter, PO in the tables given by Joseph (1990) and PAA in Liu (1995).
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Figure 4. Stripping breakup of a drop of 1 kg m−1 s−1 silicone oil (diameter = 2.6 mm) in the
flow behind a Mach 3 shock wave. Air velocity = 767 m s−1; dynamic pressure = 681.0 kPa,
Weber number = 168 600. Time (µs): (a) 15, (b) 40, (c) 50, (d ) 80, (e) 115, (f) 150.

2.1. Displacement–time graphs and accelerations

Displacement vs. time graphs for the Mach 3 experiments discussed in this paper are
shown in figure 5. The Mach 2 graphs are of similar form. The distance refers to
the slowest moving drop fragment (the windward stagnation point); other parts of
the fragmenting drop accelerate from rest even more rapidly. The graphs are nearly
perfect parabolas for about the first 200 µs of the motion, which allows the initial
acceleration to be obtained by fitting a curve of the form x− x0 = α(t− t0)2. Values
of the parameters α, t0, x0, and the initial acceleration are listed in table 2. It is
noteworthy that in these graphs the acceleration is constant, independent of time for
small times, and about 104–105 times the acceleration due to gravity depending upon
the shock wave Mach number. In general there is a moderate decrease in acceleration
with time over the course of the several hundred microseconds that it takes to totally
fragment the drop.

The initial accelerations are an increasing function of the shock Mach number; the
dynamic pressure which accelerates the drop increases with the free-stream velocity.
At a fixed free-stream dynamic pressure there appears to be a tendency for the
acceleration to decrease with drop size. If we take the drag on a spherical drop to be
proportional to the drop diameter squared and the mass to the diameter cubed, then
the acceleration is proportional to D−1 and decreases with increasing D.



Rayleigh–Taylor instability of viscoelastic drops 115

0.04

0.03

0.02

0.01

0.010

0.008

0.006

0.004

0.002

0.010

0.008

0.006

0.004

0.002

D
is

ta
nc

e 
(m

)
D

is
ta

nc
e 

(m
)

D
is

ta
nc

e 
(m

)

Silicone oil (SO 1000)

2% Polyox

2% Polyacrylamide

0.5 1.0 1.5 2.0 2.5 (×10–4)

0.5 1.0 1.5 (×10–4)

0.5 1.0 1.5 (×10–4)
Time (s)

Figure 5. Distance travelled vs. time. x − x0 = α(t − t0)2 where x0 and t0 are the extrapolated
starting values from the curve fitting technique. The starting values x0 and t0 are uncertain within
several pixels and several frames (5 µs per frame).

3. Theory
3.1. Background

Rayleigh–Taylor instabilities (Taylor 1950) always play a role in drop breakup.
Rayleigh showed that a heavy fluid over a light fluid is unstable, as common experience
dictates. He treated the stability of heavy fluid over light fluid without viscosity, and
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2% Aqueous
Liquid Silicone oil 2% Aqueous PO PAA

Viscosity (kg m−1 s−1) 1 1 35 35 0.96
Shock Mach no. 2 3 2 3 3
α (m s−2) 1.463× 105 5.561× 105 0.687× 105 3.240× 105 2.461× 105

x0 (m) −28.5× 10−5 7.45× 10−5 −17.7× 10−5 −0.046× 10−5 −6.16× 10−5

t0 (s) −3.43× 10−5 0.21× 10−5 −5.07× 10−5 −0.12× 10−5 −1.49× 10−5

Initial acceleration 2.92× 105 11.12× 105 1.37× 105 6.48× 105 4.92× 105

(m s−2)
Max. accel. 1.07× 105 4.05× 105 0.86× 105 3.07× 105 2.74× 105

from (3.9)
(c = 0) (m s−2)

Mean accel./ 2.7 2.7 1.6 2.1 1.8
max. accel.
from (3.9)

Table 2. Curve-fitting parameters and initial accelerations for the liquid drops specified in table 1.

he found that a disturbance of the flat free surface grows exponentially like exp(nt)
where

n =

{
kg(ρ2 − ρ1)

ρ1 + ρ2

}1/2

, (3.1)

where ρ2 is the density of the heavy fluid, ρ1 is the density of the light fluid, g is the
acceleration due to gravity and k = 2π/l is the wavenumber and l is the wavelength.
The instability described by (3.1) is catastrophic since the growth rate n tends to
infinity, at any fixed time, no matter how small, as the wavelength tends to zero.
The solutions are unstable to short waves even at the earliest times. Such disastrous
instabilities are called ‘Hadamard unstable’ and the initial value problems associated
with these instabilities are said to be ‘ill posed’ (Joseph & Saut 1990). Ill-posed
problems are disasters for numerical simulations: because they are unstable to ever
shorter waves, the finer the mesh, the worse the result.

Nature will not allow such a singular instability; for example, neglected effects
like viscosity and surface tension will enter the physics strongly at the shortest
wavelength. Surface tension eliminates the instability of the short waves; there is a
finite wavelength depending strongly on viscosity as well as surface tension for which
the growth rate n is maximum. This is the wavelength that should occur in a real
physical problem and would determine the wavelength on the corrugated fronts of
breaking drops in a high-speed air flow.

Taylor (1950) extended Rayleigh’s inviscid analysis to the case where a constant
acceleration of the superposed fluids other than gravity is taken into account. As-
suming a constant value for the acceleration, Taylor (1950) showed that when two
superposed fluids of different densities are accelerated in a direction perpendicular
to their interface, this surface is unstable if the acceleration is directed from the
lighter to the heavier fluid. The Taylor instability depends strongly on the value of
the acceleration a; for example, if g in (3.1) is replaced by a = 104 g, the growth rate
n is increased by a factor of 100. Representative values of the acceleration of drops
in our shock tube are 104 g to 105 g; moreover the acceleration is nearly constant
for all liquid drops at a given shock Mach number (see table 2 of JBB). A similar
observation was made by Engel (1958). Since the acceleration is perpendicular to the
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air–liquid interface and directed from gas to liquid, the accelerating liquid drop is
unstable and is prey to the characteristics short-wave corrugation associated with this
instability.

The corrugations at the front of an unstable drop are driven toward the drop
equator by shear flow of gas coming from the high-pressure stagnation point. This
shear flow may also be subject to an instability of the Kelvin–Helmholz type. Since the
tangential velocity is zero at the stagnation point and small near the stagnation point,
the Kelvin–Helmholz instability may not interact very strongly with the Rayleigh–
Taylor instability.

3.2. Acceleration

The acceleration of the drop is a major factor in the Rayleigh–Taylor (RT) instability.
It is instructive to see how the acceleration enters into the equations of motion.
Suppose the laboratory frame is identified with (X , t̂) and the drop velocity is v(X , t̂).
Then we refer the equations of motion

ρ

(
∂v

∂t̂
+ v · ∂v

∂X

)
= ∇ ·T + ρg,

∂

∂X
· v = 0 (3.2)

to an accelerating frame in which the mass centre of the drop is stationary, identified
with (x, t) and v(X , t̂) = U (x, t) +V (t), dX = dx+V (t) dt, dt̂ = dt. Then we find that

ρ

(
∂U

∂t
+U · ∂U

∂x

)
+ ρV̇ = ∇ ·T + ρg,

∂

∂x
·U = 0 (3.3)

where T is the stress tensor.
The term

ρ(g− V̇ ) (3.4)

enters into Rayleigh–Taylor instability and V̇ dominates in the drop breakup problem
because the initial velocity is very small and the initial acceleration is very large.

The Rayleigh–Taylor instability occurs when V̇ is directed from the light to the
heavy fluid, as when the initially stationary drop is accelerated to the free-stream
velocity in the high-speed air stream behind the shock in the shock tube or when a
moving drop in a stagnant fluid is decelerated by the air to zero velocity. The analysis
works well in air and liquid where the density and viscosity of air can be neglected
with only small error; there is Rayleigh–Taylor instability in a vacuum because it is
the drop acceleration term and not the material properties of air which induces the
instability.

In the present application the acceleration of the drop is roughly proportional to
the dynamic pressure which vanishes in a vacuum. Drop breakup in a vacuum could
occur by acceleration due to gravity, say in a rarified Jovian atmosphere.

At early times the drop flattens under high pressure at the front and back of the
drop; very soon thereafter the pressure recovery at the back of the drop falls due to
the formation of a wake with low pressures like those associated with high-speed flow
at the side of the drop. At these early times we may estimate the terms in Newton’s
formula F = mV̇ . We approximate the drop shape as hemispherical with radius R0

and volume 2
3
πR3

0 . The force is mainly due to the pressure drop from front to back;
at the front we have the dynamic pressure

pf = ρU2/2 (3.5)



118 D. D. Joseph, G. S. Beavers and T. Funada

whereas at the back

pb = cρU2/2 (3.6)

with c < 1. Then the force is

F = (pf − pb)πR2
0 = (1− c)ρU2πR2

0/2 (3.7)

and

mV̇ = ρD
2
3
πR3

0V̇ (3.8)

where ρ is the density of the air and ρD the density of the liquid drops. Hence

V̇ = 3
4
(1− c) ρ

ρD

U2

R0

. (3.9)

This formula predicts that the drop acceleration scales with the reciprocal of the drop
radius as we mentioned before, and with the dynamic pressure. The acceleration V̇
of the drop could be reduced to very low values in a low-pressure environment even
when the air speed U is large.

3.3. Stability analysis

The undisturbed interface between two fluids is located at z = 0, with a system of
Cartesian coordinates x = (x, y, z) = (x1, x2, x3) moving with acceleration a:

a = g− V̇ = (0,−g,−V̇ ) = (0,−g,−a). (3.10)

For the conditions of the experiments described in this paper the drop moves in a
horizontal plane and we may neglect g as at least four orders of magnitude smaller
than V̇ . The undisturbed rest state is given by the pressure p̄(2) in the heavy non-
Newtonian fluid (the Oldroyd-B fluid) in z > 0 and p̄(1) in the light Newtonian fluid
in z < 0:

p̄(2) = p0 − ρ2az, p̄(1) = p0 − ρ1az, (3.11)

where p0 is the pressure at the interface, ρ2 denotes the density of the heavy fluid,
and ρ1 is the density of the light fluid. Small disturbances are superimposed upon
the undisturbed state to give rise to the Rayleigh–Taylor instability, for which the
equations in the heavy fluid (in 0 < z) are given by

ρ2

∂u(2)

∂t
= −∇p(2) + ∇ · τ (2), (3.12a)

∇ · u(2) = 0, (3.12b)

τ
(2)
ij + λ1

∂τ
(2)
ij

∂t
= 2µ2

(
e

(2)
ij + λ2

∂e
(2)
ij

∂t

)
, (3.12c)

e
(2)
ij =

1

2

(
∂u

(2)
i

∂xj
+
∂u

(2)
j

∂xi

)
, (3.12d)

where u(2) = (u(2), v(2), w(2)) = (u(2)
1 , u

(2)
2 , u

(2)
3 ) is the velocity disturbance, the viscous

stress tensor τ(2)
ij of the Oldroyd-B fluid is expressed as the constitutive equation

(3.12c) with the strain tensor e(2)
ij and the viscosity µ2; λ1 is the relaxation time and λ2

the retardation time; the conventional tensor notation is used here. Then, equations
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for disturbances in the light fluid (in z < 0) are given by

ρ1

∂u(1)

∂t
= −∇p(1) + ∇ · τ (1), (3.13a)

∇ · u(1) = 0, (3.13b)

τ
(1)
ij = 2µ1e

(1)
ij , (3.13c)

e
(1)
ij =

1

2

(
∂u

(1)
i

∂xj
+
∂u

(1)
j

∂xi

)
, (3.13d)

where the viscous stress tensor τ(1)
ij of the Newtonian fluid is expressed as (3.13c) with

the strain tensor e(1)
ij and the viscosity µ1.

Boundary conditions at the interface with displacement h (at z = h ≈ 0) are given
by the continuity of velocity, the kinetic condition and the continuity of the stress:

u(1) = u(2),
∂h

∂t
= w(1) = w(2), (3.14a, b)

τ
(1)
13 = τ

(2)
13 , τ

(1)
23 = τ

(2)
23 , (3.14c, d )

−p(2) + τ
(2)
33 + ρ2ah− (−p(1) + τ

(1)
33 + ρ1ah) = −γ∆h, (3.14e)

where γ is the surface tension and ∆ is the horizontal Laplacian:

∆ =
∂2

∂x2
+

∂2

∂y2
. (3.15)

Further, the boundary conditions require that the disturbances vanish, respectively,
as z → ±∞.

The solution to the system of the disturbances may take the following form:

[u(2), p(2), h, u(1), p(1)] = [û(2)(z), p̂(2)(z), ĥ, û(1)(z), p̂(1)(z)] exp(nt+ikxx+ikyy)+c.c., (3.16)

where n denotes the complex growth rate, (kx, ky, 0) is the wavenumber vector of

magnitude k =
√
k2
x + k2

y and c.c. stands for the complex conjugate of the preceding

expression. Using (3.16), the constitutive equation (3.12c) is now written as

τ
(2)
ij = 2α̂e(2)

ij , (3.17a)

with α̂ defined by

α̂ = µ2

1 + λ2n

1 + λ1n
. (3.17b)

Taking this into account and taking rotation of (3.12a) and (3.13a), using ∇×∇×u =
−∇2u for incompressible fluid, we get the following equations:(
∇2 − nρ1

µ1

)
∇2w(1) = 0 in z < 0,

(
∇2 − nρ2

α̂

)
∇2w(2) = 0 in z > 0, (3.18a, b)

for which the boundary conditions at the disturbed interface are written in terms of
w(1) and w(2) as,

∂w(1)

∂z
=
∂w(2)

∂z
,

∂h

∂t
= w(1) = w(2), (3.19a, b)
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µ1

(
∆− ∂2

∂z2

)
w(1) = α̂

(
∆− ∂2

∂z2

)
w(2), (3.19c)

−
(
ρ2

∂2w(2)

∂t∂z
− α̂∇2 ∂w

(2)

∂z

)
+ 2α̂∆

∂w(2)

∂z
+

(
ρ1

∂2w(1)

∂t∂z
− µ1∇2 ∂w

(1)

∂z

)
− 2µ1∆

∂w(1)

∂z
+ (ρ2 − ρ1)a∆h+ γ∆2h = 0, (3.19d )

and the conditions away from the interface are

w(1) → 0 as z → −∞, w(2) → 0 as z →∞. (3.19e, f )

To satisfy (3.19e, f ), the solutions to (3.18) are expressed as

w(1) = A(1) exp(kz)+B(1) exp(q1z), w(2) = A(2) exp(−kz)+B(2) exp(−q2z), (3.20a, b)

with q1 and q2 defined by

q1 =

√
k2 +

nρ1

µ1

, q2 =

√
k2 +

nρ2

α̂
. (3.21a, b)

After substituting (3.20) into the boundary conditions (3.19a–d ), we obtain an in-
homogeneous system of linear equations for A(1), B(1), A(2) and B(2) which is solvable if
and only if the determinant of the coefficient matrix vanishes. After a straightforward
but tedious analysis we have the dispersion relation:

−
[
1 +

1

n2

(
(α1 − α2)ak +

γk3

ρ1 + ρ2

)]
(α2q1 + α1q2 − k)− 4kα1α2

+ 4
k2

n

µ1 − α̂
ρ1 + ρ2

[α2q1 − α1q2 + (α1 − α2)k] + 4
k3

n2

(
µ1 − α̂
ρ1 + ρ2

)2

(q1 − k)(q2 − k) = 0,

(3.22)

where

α1 =
ρ1

ρ1 + ρ2

, α2 =
ρ2

ρ1 + ρ2

. (3.23a, b)

The experiment shows ρ2 � ρ1, for which α2 → 1 and α1 → 0. Moreover µ1 � α̂ in
the experiment, so that (3.22) reduces to

−
[
1 +

1

n2

(
−ak +

γk3

ρ2

)]
− 4

k2

n

α̂

ρ2

+ 4
k3

n2

(
α̂

ρ2

)2

(q2 − k) = 0. (3.24)

Equation (3.24) approximates (3.22) with only a small error; it is appropriate for
Rayleigh–Taylor instability in a vacuum.

The solution of (3.22) gives rise to a dispersion relation of the type shown in
figure 6. The border of stability is given by a critical wavenumber with stability only
when

k > kc =

√
ρV̇

γ
, (3.25)

independent of viscosity, relaxation or retardation time. Dispersion relations for our
experiments are presented in figures 7–9 of § 3.5.
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Figure 6. Schematic of a dispersion relation for Rayleigh–Taylor instability. The curve depends
strongly on viscosity, relaxation and retardation times as shown in figures 7, 8 and 9. k̃ is the
wavenumber of the most dangerous wave.

3.4. Viscoelastic potential flow analysis of stability

The theory of viscoelastic potential flows has been considered by Joseph & Liao
(1994). They examined the conditions under which potential flows satisfy the equations
governing viscoelastic fluids. In viscoelastic potential flows the velocity is given as
the gradient of a potential u = ∇φ and ∇2φ = 0; this is an enormous simplification.
Of course, the continuity of the velocity and shear stress at the interface must be
sacrificed; the stress in a viscoelastic potential flow is evaluated on u = ∇φ and is, in
general, not zero. The failure of potential flows to satisfy no-slip conditions is fatal
in problems with solid surfaces and boundary layer analysis must be used. However,
the boundary layers at air–liquid surfaces resolve a discontinuity in the gradient of
velocity rather than the velocity and the effects of these layers are smaller and smaller
as the Reynolds numbers become larger. In any case it is never necessary or useful
to consider inviscid fluids when invoking potential flow.

Rayleigh–Taylor instability at an air–liquid or vacuum–liquid surface is one of
the many cases in which accurate results may be obtained using potential flow. For
viscous potential flow the viscosity enters only in the normal component of the viscous
stress. The dispersion relations for viscous flow and viscous potential flow derived in
JBB, though different, give values for the wavenumber and the growth rate of the
most dangerous wave that are in good agreement. Viscous potential theory yields
values for the wavenumber that are about 2% higher, and values for the growth rate
that are about 8.8% higher, than the corresponding values from fully viscous theory
(JBB, table 3). This shows that the main physical effect of viscosity is on the normal
stress balance.

The results given in JBB carry over to viscoelastic potential flows as we now show.
We now require for each fluid that the potential φ gives the velocity disturbance
(u = ∇φ) and satisfies the Laplace equation

∇2φ = 0 (3.26)

and the pressure disturbance is given by Bernoulli’s equation

ρ
∂φ

∂t
+ p+ ρaz = −ρ

2
|∇φ|2 ≈ 0, (3.27)
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for the same undisturbed state that was given in § 3.3. Then the boundary conditions
are given by (3.14b, e) at the disturbed interface and (3.19e, f ) away from the interface.
The normal stress balance (3.14e) is now written, using (3.27), as

ρ2

∂φ(2)

∂t
+ τ

(2)
33 + ρ2ah−

(
ρ1

∂φ(1)

∂t
+ τ

(1)
33 + ρ1ah

)
= −γ∆h, (3.28)

where
τ33

2µ
= e33 =

∂w

∂z
=
∂2φ

∂z2
. (3.29)

Thus the solutions to (3.26) that vanish respectively as z → ±∞ may be expressed
as

w(1) = A(1) exp(kz) in z < 0, w(2) = A(2) exp(−kz) in z > 0. (3.30a, b)

Substitution of these into the boundary conditions using (3.19b) leads to the dispersion
relation:

1 =
α2 − α1

n2
ka− k3γ

n2(ρ2 + ρ1)
− 2k2

n

α̂+ µ1

ρ2 + ρ1

. (3.31)

Without much loss of generality, we may put α1 = 0, α2 = 1 and α̂� µ1, so that the
dispersion relation becomes

1 =
ka

n2
− k3γ

n2ρ2

− 2k2

n

α̂

ρ2

, (3.32)

which can then be written as a quadratic equation for the growth rate n.
It is interesting to note here that (3.32) for viscoelastic potential flow gives the

same growth rate as the dispersion relation (3.24) for fully viscous flow if q2 in (3.24)
is approximated as

q2 − k =

√
k2 +

nρ2

α̂
− k ≈ nρ2

2kα̂
, (3.33)

i.e. under the condition that
nρ2

2kα̂
� 1. (3.34)

Thus, under this condition, the theory of viscoelastic potential flow may provide a
good approximation of fully viscous theory.

3.5. Comparison of exact and potential flow analysis

Based on the data for the experimental conditions cited in tables 1 and 2, the
dispersion relation (3.24) is used to calculate the stability conditions, and the results
are depicted in figure 7: 2% PO (Ms = 2); figure 8: 2% PO (Ms = 3); and figure 9:
2% PAA (Ms = 3). In each of the figures several plots of the dispersion relation (3.24)
are shown for a fixed (known) value of the relaxation time and various assumed
values of the retardation time λ2. The growth rates are computed at increments in
the wavenumber of 200 m−1 from k = 0 to the critical value. The dispersion relation
(3.32) from viscoelastic potential theory gives rise to graphs that are nearly identical
to those in figures 7–9.

For comparison of (3.32) and (3.24), values of the wavenumber k, wavelength
l and growth rate n of the most dangerous wave are shown in table 3, 2% PO
(Ms = 2); table 4, 2% PO (Ms = 3); and table 5, 2% PAA (Ms = 3). These results
show that the set of values of the growth rate and the wavenumber given by the
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Figure 7. The growth rate n versus the wavenumber k from (3.24) for 2% PO (Ms=2); λ1 =0.21 s.
The average wavelength and scatter from a very early time in the experiment are indicated.
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Figure 8. The growth rate n versus the wavenumber k from (3.24) for 2% PO (Ms = 3); λ1 = 0.21 s.
The average wavelength and scatter from a very early time in the experiment are indicated.

viscoelastic potential analysis and the corresponding set of values obtained from the
exact stability analysis are at the same level of good agreement as in the Newtonian
case. The wavenumber predicted from viscoelastic potential analysis is greater than
the corresponding value from fully viscoelastic theory by between 0 and 5.4% (with
two exceptions): the growth rates from viscoelastic potential analysis are between
8.5% and 9.0% higher than predicted by fully viscoelastic theory, except at the
smallest values of λ2.
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Figure 9. The growth rate n vs. the wavenumber k from (3.24) for 2% PAA (Ms = 3); λ1 = 0.034 s.
The average wavelength and scatter from a very early time in the experiment are indicated. Also
shown by dotted lines are the average wavelength and scatter for the set of waves of small
wavelength which appear to be superimposed on the long wavelength waves.

Fully viscoelastic Viscoelastic potential Percent difference

λ2 (s−1) k (m−1) l (mm) n (s−1) k (m−1) l (mm) n (s−1) k n

λ1/5 600 10.472 6331.7 800 7.8539 6870.9 33.3 8.5
λ1/8 1000 6.2832 7425.1 1000 6.2832 8077.7 0 8.8
λ1/10 1000 6.2832 7991.5 1200 5.2359 8684.8 20.0 8.2
λ1/20 1800 3.4907 10061.5 1800 3.4907 10945.9 0 8.8
λ1/100 4800 1.3090 17000.0 5000 1.2566 18489.8 4.2 8.8
λ1/1000 15 000 0.4189 32238.7 15 800 0.3977 34849.6 5.3 8.1
λ1/10 000 22 400 0.2805 43036.2 23 600 0.2662 45074.9 5.4 4.7
0 24 200 0.2596 45697.3 25 000 0.2513 47119.7 3.3 3.1

Table 3. 2% PO (Ms = 2). Values of the wavenumber k, wavelength l and growth rate n of the most
dangerous wave for the experimental conditions given in tables 1 and 2; the retardation time λ2 is
changed against the relaxation time λ1. The values of k and n predicted by viscoelastic potential
theory are higher than the corresponding fully viscoelastic predictions. The differences are indicated
as a percentage of the fully viscoelastic values.

3.6. The effect of acceleration on instability

The value of the acceleration V̇ is a major factor in Rayleigh–Taylor instability. The
wavelength of the most rapidly growing disturbance decreases and the growth rate
increases strongly as the acceleration V̇ is increased (figure 10). The discussion of
acceleration given in § 3.2 suggests that the force producing acceleration at early times
is the pressure difference across the drop measured basically by the dynamic pressure.
The breakup of a drop even at high speed may be very retarded or even suppressed
when the air density is small, as at high altitudes. The analysis suggests also that
the acceleration does not depend strongly on the rheology of the drop even though
rheology affects the growth rate strongly.



Rayleigh–Taylor instability of viscoelastic drops 125

Fully viscoelastic Viscoelastic potential Percent difference

λ2 (s−1) k (m−1) l (mm) n (s−1) k (m−1) l (mm) n (s−1) k n

λ1/5 1200 5.2359 17925.3 1200 5.2359 19496.0 0 8.8
λ1/8 1600 3.9269 20968.4 1600 3.9269 22801.0 0 8.7
λ1/10 1800 3.4907 22584.4 1800 3.4907 24549.0 0 8.7
λ1/20 3000 2.0944 28424.1 3000 2.0944 30915.1 0 8.8
λ1/100 8200 0.7662 48320.5 8400 0.7480 52541.6 2.4 8.7
λ1/1000 29 200 0.2152 96037.0 30 600 0.2053 103 960 4.8 8.2
λ1/10 000 49 400 0.1272 138 925 51 600 0.1218 145 138 4.5 4.4
0 55 600 0.1130 152 570 56 600 0.1110 155 111 1.8 1.7

Table 4. As table 3 but for 2% PO (Ms = 3).

Fully viscoelastic Viscoelastic potential Percent difference

λ2 (s−1) k (m−1) l (mm) n (s−1) k (m−1) l (mm) n (s−1) k n

λ1/5 11 200 0.5610 49081.4 11 400 0.5512 53350.0 1.8 8.7
λ1/8 14 800 0.4245 57009.4 15 200 0.4134 61948.0 2.7 8.7
λ1/10 17 000 0.3696 61112.1 17 400 0.3611 66389.7 2.4 8.6
λ1/20 24 400 0.2575 75051.4 25 400 0.2474 81393.6 4.1 8.5
λ1/100 43 200 0.1454 108 441 45 400 0.1384 115 536 5.1 6.5
λ1/1000 56 400 0.1114 133 671 57 800 0.1087 136 333 2.5 2.0
λ1/10 000 59 000 0.1065 138 403 59 400 0.1058 139 290 0.7 0.6
0 59 400 0.1058 139 007 59 800 0.1051 139 633 0.7 0.5

Table 5. As table 3 but for 2% PAA (Ms = 3).
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Figure 10. The effect of acceleration on the dispersion relation for 2% PO; λ1 = 0.21 s,
λ2 = 3.3× 10−4 λ1.

4. Comparison of theory and experiment
We now compare the Rayleigh–Taylor stability theory with experiments on drop

breakup for the three viscoelastic cases discussed in § 2. For comparison, we repeat
results from JBB for a 1.0 kg m−1s−1 silicone oil whose viscosity nearly matches the
0.96 kg m−1 s−1 polyacrylamide. Figure 11, taken from JBB, shows the waves on drops
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Predicted
wavelength

Ms = 2 Ms = 3

Figure 11. Rayleigh–Taylor waves in silicone oil (1 kg m−1 s−1) (from JBB).

of this Newtonian liquid at very early times in the motion at shock Mach numbers
of 2 and 3.

The waves on both the polyox and polyacrylamide drops were smaller and more
difficult to identify than the waves on the Newtonian liquids shown, for example,
in Engel (1958, figure 9), Hwang et al. (1996, figure 8), and in JBB. For example,
the measured average wavelengths for the 1.0 kg m−1 s−1 silicone oil (figure 11) are
about 2.0 mm and 1.25 mm for shock Mach numbers of 2 and 3 respectively, while
the corresponding values for the 2% polyox solution are 0.39 mm and 0.20 mm.
In an attempt to identify the waves more clearly on the computer screen Adobe
PhotoshopTM was used to exaggerate the contrast. We then measured the lengths of
the waves by first locating the troughs across the front of the drop on the computer
screen, and then measuring the distance between troughs in pixels which were finally
converted to millimetres using a predetermined scaling factor for each frame. The
enhanced contrast images are shown in figure 12 for the 2% aqueous polyox and
figure 13 for the 2% polyacrylamide. The tick marks identify the wave troughs. Like
the Newtonian liquids in JBB, the troughs are easier to identify on the computer
screen than in the printed figure. The length of the waves increases with time because
the waves are ultimately forced apart by high pressures in the wave troughs; from
this it follows that the length of unstable waves should be measured at the earliest
times for which all the waves can be identified.

The early appearance and short life of distinctly identifiable Rayleigh–Taylor waves
is illustrated in figure 14(a), which shows contrast-enhanced images from a repeat
movie of the breakup of a drop (2.9 mm diameter) of 2.0% aqueous solution of
polyox at a shock Mach number of 2.9 made several months after the earlier work.
The four images in figure 14(a) show the drop at 5µs intervals starting at 30 µs after
the passage of the shock wave. As before, the images are clearer and the waves are
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Ms = 2 Ms = 3

Figure 12. Rayleigh–Taylor waves in 2% PO.

Long wavelength Short wavelength

Figure 13. Rayleigh–Taylor waves in 2% PAA.

much easier to identify on the computer screen than in the printed version where they
appear pixelated. The waves have wavelengths of 5 pixels, which translates to 0.2 mm
on the scaling used for this movie, in frames (i), (ii), and (iii) but in (iv) the waves are
becoming less distinct and only a few 5-pixel wavelengths could be found. For times
greater than that of frame (iv) the front face of the drop becomes very irregular as
the drop sheds liquid and begins to break up.

The time interval in which the waves can be identified appears to correspond to the
interval in which the original almost-spherical drop is undergoing severe deformation
as the front and back faces are being flattened and the cross-sectional area to the
flow is increasing. This deformation is shown in figure 14(b) which presents the movie
images corresponding to the contrast-enhanced images of figure 14(a). When the drop
of polyox is injected into the test section of the shock tube it leaves a thin, trailing
thread of liquid connecting it to the injection needle. The disintegration of the thread
is visible in the frames of figure 14(b). The dark area that moves downstream from
the top of the drop is the liquid that formed the small web at the top of the drop
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(a)

(b)

(i) (ii)

(iii) (iv)

(i) (ii)

(iii) (iv)

Figure 14. (a) Rayleigh–Taylor waves in 2% aqueous polyox in the flow behind a Mach 2.9
shockwave. Time (in µs) after passage of shock: (i) 30, (ii) 35, (iii) 40, (iv) 45. (b) Movie frames
corresponding to the contrast-enhanced images of (a).

where the thread was attached. Figure 14(b) also indicates that liquid starts to be
torn from the equator of the drop about 30 µs after exposure to the high-speed flow.

Returning to figure 13, there is some uncertainty in the measurements of the
wavelengths from the 2% PAA picture because there appeared to be two sets of



Rayleigh–Taylor instability of viscoelastic drops 129

waves, a distinct set with an average wavelength of 0.70 mm with a second set of
smaller waves superimposed on the larger waves. The wavelengths of the smaller
waves were very irregular, with values between approximately 0.05 mm and 0.24 mm.
Smaller, but less distinct, waves could also be identified over parts of the front face
of the polyox drops.

On figures 7–9 we graph dispersion relations corresponding to measured data given
in tables 1 and 2. The retardation time λ2 is a fitting parameter. The dispersion
graphs are sensitive to values of λ2 as is shown in figures 7–9, where for each figure
values for λ2 have been chosen to yield curves such that the wavelengths of maximum
growth are close to the interval of instability defined from the experiments, which
is also included on the figures. From these we may estimate a λ2 which centres the
wavelength of maximum growth in the interval of instability. The estimated values
of λ2 needed to achieve agreement are uniformly small, ranging from λ2 ≈ λ1/5000
for 2% aqueous polyox at Ms = 2, to λ2 ≈ λ1/100 for 2% aqueous PAA at Ms = 3.
Boltzman has described the viscosity of a fluid as an effect of relaxed elastic modes
and it is given as the area under the shear relaxation modulus. Joseph (1990, chap. 18)
interpreted the retardation time as representing the effect of the most rapidly relaxing
modes; it depends on the time of observation as well as the material. The small value
of the retardation time which matches theory and experiment reported here is as
might be expected in such an explosive and short-time (10–50µs) event as produces
Rayleigh–Taylor waves on drops suddenly exposed to a high speed airstream.

In the previous paragraph we have argued that λ2 is not fixed but depends at least
on some conditions of external excitation and that Rayleigh–Taylor disturbances are
so fast that the response of the drops is highly elastic (small values of λ2).

Following the approach adopted in JBB we arbitrarily defined a ‘breakup’ time as
the time t̂b taken for the initial amplitude A0 of an unstable disturbance A(t) = A0e

nt

to grow to M times its initial value:

M =
A(t̂b)

A0

= entb , t̂b =
1

n
lnM, (4.1)

which implies that higher growth rates n lead to faster breakup. The values for n
given in table 4 suggest that for a fixed shock Mach number, the viscoelastic liquids
appear to start to ‘break up’ faster than purely viscous liquids of about the same
viscosity. This effect is illustrated in figure 15 which shows the configuration of drops
of the test liquids 170 µs after the passing of the shock wave over the drop under the
same experimental conditions (Ms = 3.0). The top two figures compare 2% PAA with
SO 1000 silicone oil (viscosities close to 1 kg m−1 s−1). The PAA drop has broken up
completely at this stage, whereas part of the original silicone drop can still be identi-
fied. At higher viscosities the difference in breakup is more pronounced, as shown in
the lower two photographs. The 2% PO drop is completely broken up whereas the
silicone oil remains as a distorted drop. This faster start to breakup of the viscoelastic
liquids compared with the purely viscous liquid is also evident from a comparison
of the times listed in table 6 for liquid to begin to ‘blow off’ at the equator of the
drop.

5. Conclusions
We compare the breakup of two viscoelastic liquids with the breakup of a purely

viscous liquid of about the same viscosity under the same experimental conditions
using a high-speed rotating drum camera. As described in JBB, bag-and-stamen
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Shock Mach Approx. n Time for Experimental blow-
Liquid number (s−1) A = 10A0 (µs) off time (µs)

SO 1000 3 48 769 47 40
2% PO 3 90 000 25 30
2% PO 2 38 000 60 50
2% PAA: Short 3 110 000 20 35

Long 75 000 30

Table 6. Comparison of measured breakup times (defined as the time at which liquid first starts
to ‘blow-off’ the perimeter of the drop) with predicted times calculated from equation (4.1) with
M = 10 and using values of n from the fully viscoelastic analysis.

2% PAA Silicone oil

Silicone oil2% PO

Figure 15. Droplet configurations for 2% PAA, 2% PO, and two different silicone oils 170 µs after
passing of the shock over the drop under the same conditions (Ms = 3). The top pair of photographs
compares PAA with a silicone oil of approximately the same viscosity (1 kg m−1 s−1). The bottom
pair compares 2% PO (viscosity = 35 kg m−1 s−1) with a silicone oil that has a viscosity of about
one-third that of the PO (10 kg m−1 s−1).

and bag breakup occur routinely at Weber numbers of O(104–105) in the higher
viscosity drops and even in viscoelastic drops showing that the presently accepted
classification of breakup events, based mainly on water, does not hold generally. The
early events of breakup (< 100 µs), flattening, and the accumulation of fluid driven
away from the stagnation points, followed by fingering are universal and apply equally
to low- and high-viscosity fluids and to viscoelastic fluids. At later times the drop
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fragments in viscoelastic fluids are much more stringy than in Newtonian fluids of
comparable viscosity. This confirms that the stringiness of drop fragments persists in
high-speed, high-Weber-number flows. The movies generate time-displacement data
from which accelerations of the drop may be computed in these experiments. The
accelerations were 104–105 times the acceleration due to gravity, putting the drops at
risk of Rayleigh–Taylor instabilities. The Rayleigh–Taylor instabilities were computed
with an exact viscous theory and with a simplified theory based on viscous potential
flow. It is assumed that the most dangerous wave is the one whose length gives the
maximum growth rate. The simplified viscoelastic potential theory gives the critical
wavelength and growth rate to within less than 10% of the exact theory. The border of
instability to Rayleigh–Taylor fingers is given by a critical wavenumber, with stability
only when

k > kc =
√
ρa/γ,

independent of viscous and viscoelastic parameters.

The authors acknowledge the valuable contributions of Jacques Belanger, Gerry
Brenden, Abbey Eichman, and Paul Hannah. This work was supported by US Army
ERDEC through Grant No. Battelle/135905-1/Army, by the Army Research Office
and by the National Science Foundation under grant 9622235.

REFERENCES

Aitken, L. S., & Wilson, S. D. R. 1993 Rayleigh–Taylor instability in elastic liquids. J. Non-
Newtonian Fluid Mech. 49, 13–22.

Engel, O. G. 1958 Fragmentation of waterdrops in the zone behind an air shock. J. Res. Natl. Bur.
Stand. 60, 245–280.

Faeth, G. M. 1996 Spray combustion phenomena. In Twenty-Sixth Symposium on Combustion,
pp. 1593–1611. The Combustion Institute.

Hsiang, L-P. & Faeth, G. M. 1992 Near-limit drop deformation and secondary breakup. Intl J.
Multiphase Flow 18, 635–652.

Hwang, S. S., Liu, Z. & Reitz, R. D. 1996 Breakup mechanisms and drag coefficients of high-speed
vaporizing liquid drops. Atomization Sprays 6, 353–376.

Joseph, D. D. 1990 Fluid Dynamics of Viscoelastic Liquids. Springer.

Joseph, D. D., Belanger, J. & Beavers, G. S. 1999 Breakup of a liquid drop suddenly exposed to
a high speed airstream. Intl J. Multiphase Flow 25, 1263–1303 (referred to herein as JBB).

Joseph, D. D. & Liao, T. Y. 1994 Potential flows of viscous and viscoelastic fluids. J. Fluid Mech.
265, 1–23.

Joseph, D. D. & Saut, J. C. 1990 Short-wave instabilities and ill-posed initial-value problems. Theor.
Comput. Fluid Dyn. 1, 191–227.

Kitscha, J. & Kocamustafaogullari, G. 1989 Breakup criteria for fluid particles. Intl J. Multiphase
Flow 15, 573–588.

Krzeczkowski, S. A. 1980 Measurement of liquid droplet disintegration mechanisms. Intl J.
Multiphase Flow 6, 227–239.

Lane, W. R. 1951 Shatter of drops in stream of air. Indust. Engng Chem. 43, 1312–1317.

Liu, Y. J. 1995 Particle motions in non-Newtonian fluids. PhD Thesis, University of Minnesota.

Liu, Z. & Reitz, R. D. 1997 An analysis of the distortion and breakup mechanisms of high-speed
liquid drops. Intl J. Multiphase Flow 23, 631–650.

Matta, J. E. & Tytus, R. P. 1982 Viscoelastic breakup in a high velocity airstream. J. Appl. Polymer
Sci. 27, 397–405.

Matta, J. E., Tytus, R. P. & Harris, J. 1983 Aerodynamic atomization of polymeric solutions.
Chem. Engng Commun. 19, 191–204.

Stone, H. A. 1994 Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid
Mech. 26, 65–102.



132 D. D. Joseph, G. S. Beavers and T. Funada

Taylor, G. I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular
to their planes, I. Proc. R. Soc. Lond. A 201, 192–196; also in The Scientific Papers of G. I.
Taylor vol. 3 (ed. G. K. Batchelor) Cambridge University Press (1993).

Wierzba, A. 1990 Deformation and breakup of liquid drops in a gas stream at nearly critical Weber
numbers. Exp. Fluids 9, 59–64.

Wilcox, J. D., June, R. K., Braun, H. A. & Kelly, R. C. 1961 The retardation of drop breakup in
high-velocity airstreams by polymeric modifiers. J. Appl. Polymer Sci. 13, 1–6.


